You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

What is the best way to shunt these carriages so that each train can continue its journey?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Can you find all the different ways of lining up these Cuisenaire rods?

An activity making various patterns with 2 x 1 rectangular tiles.

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

These practical challenges are all about making a 'tray' and covering it with paper.

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

How many different triangles can you make on a circular pegboard that has nine pegs?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?