Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

How many different triangles can you make on a circular pegboard that has nine pegs?

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

These practical challenges are all about making a 'tray' and covering it with paper.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

Can you find all the different ways of lining up these Cuisenaire rods?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

An investigation that gives you the opportunity to make and justify predictions.

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

What is the best way to shunt these carriages so that each train can continue its journey?

Try out the lottery that is played in a far-away land. What is the chance of winning?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Find out what a "fault-free" rectangle is and try to make some of your own.

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Can you draw a square in which the perimeter is numerically equal to the area?

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Can you find all the different triangles on these peg boards, and find their angles?

In a bowl there are 4 Chocolates, 3 Jellies and 5 Mints. Find a way to share the sweets between the three children so they each get the kind they like. Is there more than one way to do it?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Investigate the different ways you could split up these rooms so that you have double the number.