Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

What is the best way to shunt these carriages so that each train can continue its journey?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Can you find all the different ways of lining up these Cuisenaire rods?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

How many different triangles can you make on a circular pegboard that has nine pegs?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

An activity making various patterns with 2 x 1 rectangular tiles.

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

These practical challenges are all about making a 'tray' and covering it with paper.

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Find out what a "fault-free" rectangle is and try to make some of your own.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Investigate the different ways you could split up these rooms so that you have double the number.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

You need to find the values of the stars before you can apply normal Sudoku rules.

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.