Find out what a "fault-free" rectangle is and try to make some of your own.

Can you find all the different ways of lining up these Cuisenaire rods?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Try out the lottery that is played in a far-away land. What is the chance of winning?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

In this matching game, you have to decide how long different events take.

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

An activity making various patterns with 2 x 1 rectangular tiles.

These rectangles have been torn. How many squares did each one have inside it before it was ripped?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

How many different triangles can you make on a circular pegboard that has nine pegs?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Can you find all the ways to get 15 at the top of this triangle of numbers?

This task follows on from Build it Up and takes the ideas into three dimensions!

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Can you find all the different triangles on these peg boards, and find their angles?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

What is the date in February 2002 where the 8 digits are palindromic if the date is written in the British way?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?