Find out what a "fault-free" rectangle is and try to make some of your own.

A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

How many different symmetrical shapes can you make by shading triangles or squares?

This challenge extends the Plants investigation so now four or more children are involved.

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Can you find all the different ways of lining up these Cuisenaire rods?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

When you throw two regular, six-faced dice you have more chance of getting one particular result than any other. What result would that be? Why is this?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

An activity making various patterns with 2 x 1 rectangular tiles.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Can you draw a square in which the perimeter is numerically equal to the area?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

How many different triangles can you make on a circular pegboard that has nine pegs?

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

Find out about Magic Squares in this article written for students. Why are they magic?!

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.