Find the values of the nine letters in the sum: FOOT + BALL = GAME

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

Move your counters through this snake of cards and see how far you can go. Are you surprised by where you end up?

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?

Given the products of adjacent cells, can you complete this Sudoku?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

A few extra challenges set by some young NRICH members.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

This challenge extends the Plants investigation so now four or more children are involved.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

This Sudoku, based on differences. Using the one clue number can you find the solution?

Can you work out some different ways to balance this equation?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Have a go at balancing this equation. Can you find different ways of doing it?

Can you replace the letters with numbers? Is there only one solution in each case?

Four small numbers give the clue to the contents of the four surrounding cells.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

Use the differences to find the solution to this Sudoku.