This article for primary teachers suggests ways in which to help children become better at working systematically.

In this article, the NRICH team describe the process of selecting solutions for publication on the site.

Given the products of diagonally opposite cells - can you complete this Sudoku?

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

A few extra challenges set by some young NRICH members.

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

A Sudoku that uses transformations as supporting clues.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Can you find all the different triangles on these peg boards, and find their angles?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

This challenge extends the Plants investigation so now four or more children are involved.

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Try out the lottery that is played in a far-away land. What is the chance of winning?

Two sudokus in one. Challenge yourself to make the necessary connections.

Move your counters through this snake of cards and see how far you can go. Are you surprised by where you end up?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

This article for teachers suggests activities based on pegboards, from pattern generation to finding all possible triangles, for example.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

In this matching game, you have to decide how long different events take.

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

A challenging activity focusing on finding all possible ways of stacking rods.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .