Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Can you find all the different ways of lining up these Cuisenaire rods?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

These practical challenges are all about making a 'tray' and covering it with paper.

What is the best way to shunt these carriages so that each train can continue its journey?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

An activity making various patterns with 2 x 1 rectangular tiles.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

In this matching game, you have to decide how long different events take.

Try out the lottery that is played in a far-away land. What is the chance of winning?

Can you order the digits from 1-6 to make a number which is divisible by 6 so when the last digit is removed it becomes a 5-figure number divisible by 5, and so on?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

On a digital clock showing 24 hour time, over a whole day, how many times does a 5 appear? Is it the same number for a 12 hour clock over a whole day?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Investigate the different ways you could split up these rooms so that you have double the number.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

How many models can you find which obey these rules?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

My cube has inky marks on each face. Can you find the route it has taken? What does each face look like?

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

The pages of my calendar have got mixed up. Can you sort them out?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.