Search by Topic

Resources tagged with Working systematically similar to Can You Find a Perfect Number?:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 332 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Working systematically

problem icon

Multiply Multiples 1

Stage: 2 Challenge Level: Challenge Level:1

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

problem icon

Multiply Multiples 2

Stage: 2 Challenge Level: Challenge Level:1

Can you work out some different ways to balance this equation?

problem icon

The Moons of Vuvv

Stage: 2 Challenge Level: Challenge Level:1

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

problem icon

Multiply Multiples 3

Stage: 2 Challenge Level: Challenge Level:1

Have a go at balancing this equation. Can you find different ways of doing it?

problem icon

How Old Are the Children?

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

problem icon

Factors and Multiple Challenges

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

problem icon

Pouring the Punch Drink

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

problem icon

Stairs

Stage: 1 and 2 Challenge Level: Challenge Level:1

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

problem icon

Sweets in a Box

Stage: 2 Challenge Level: Challenge Level:1

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

problem icon

The Pied Piper of Hamelin

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

problem icon

Button-up Some More

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

problem icon

It Figures

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

problem icon

Curious Number

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

problem icon

Cuboids

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

problem icon

Journeys in Numberland

Stage: 2 Challenge Level: Challenge Level:1

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

problem icon

A-magical Number Maze

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

problem icon

Multiplication Squares

Stage: 2 Challenge Level: Challenge Level:1

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

problem icon

Broken Toaster

Stage: 2 Short Challenge Level: Challenge Level:1

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

problem icon

Trebling

Stage: 2 Challenge Level: Challenge Level:1

Can you replace the letters with numbers? Is there only one solution in each case?

problem icon

ABC

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

problem icon

Ones Only

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

problem icon

Team Scream

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

problem icon

Magic Potting Sheds

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

problem icon

Mystery Matrix

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

problem icon

Advent Calendar 2011 - Secondary

Stage: 3, 4 and 5 Challenge Level: Challenge Level:1

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

problem icon

More Magic Potting Sheds

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

problem icon

Shopping Basket

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

problem icon

Product Sudoku 2

Stage: 3 and 4 Challenge Level: Challenge Level:1

Given the products of diagonally opposite cells - can you complete this Sudoku?

problem icon

Prison Cells

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

problem icon

All Seated

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

problem icon

American Billions

Stage: 3 Challenge Level: Challenge Level:1

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

problem icon

Product Doubles Sudoku

Stage: 3 and 4 Challenge Level: Challenge Level:1

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

problem icon

A First Product Sudoku

Stage: 3 Challenge Level: Challenge Level:1

Given the products of adjacent cells, can you complete this Sudoku?

problem icon

Cinema Problem

Stage: 3 and 4 Challenge Level: Challenge Level:1

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

problem icon

Zargon Glasses

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

problem icon

Two Egg Timers

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

problem icon

Tiling

Stage: 2 Challenge Level: Challenge Level:1

An investigation that gives you the opportunity to make and justify predictions.

problem icon

Ben's Game

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

problem icon

Peaches Today, Peaches Tomorrow....

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

problem icon

Polo Square

Stage: 2 Challenge Level: Challenge Level:1

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

problem icon

Adding Plus

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

problem icon

All the Digits

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

problem icon

Neighbours

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

problem icon

Summing Consecutive Numbers

Stage: 3 Challenge Level: Challenge Level:1

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

problem icon

Integrated Product Sudoku

Stage: 3 and 4 Challenge Level: Challenge Level:1

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

problem icon

You Owe Me Five Farthings, Say the Bells of St Martin's

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

problem icon

Home City

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

problem icon

Arranging the Tables

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

problem icon

Calendar Cubes

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

problem icon

A Mixed-up Clock

Stage: 2 Challenge Level: Challenge Level:1

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?