There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

A few extra challenges set by some young NRICH members.

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

Move your counters through this snake of cards and see how far you can go. Are you surprised by where you end up?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Given the products of adjacent cells, can you complete this Sudoku?

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

In this matching game, you have to decide how long different events take.

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

This Sudoku, based on differences. Using the one clue number can you find the solution?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

This challenge extends the Plants investigation so now four or more children are involved.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

Stuart's watch loses two minutes every hour. Adam's watch gains one minute every hour. Use the information to work out what time (the real time) they arrived at the airport.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?