A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

A Sudoku that uses transformations as supporting clues.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

A little mouse called Delia lives in a hole in the bottom of a tree.....How many days will it be before Delia has to take the same route again?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

This Sudoku, based on differences. Using the one clue number can you find the solution?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

A few extra challenges set by some young NRICH members.

Four small numbers give the clue to the contents of the four surrounding cells.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

You need to find the values of the stars before you can apply normal Sudoku rules.

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

When you throw two regular, six-faced dice you have more chance of getting one particular result than any other. What result would that be? Why is this?

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?