Here are four cubes joined together. How many other arrangements of four cubes can you find? Can you draw them on dotty paper?

How many models can you find which obey these rules?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Investigate the different ways you could split up these rooms so that you have double the number.

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

My cube has inky marks on each face. Can you find the route it has taken? What does each face look like?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?