A little mouse called Delia lives in a hole in the bottom of a tree.....How many days will it be before Delia has to take the same route again?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

My cube has inky marks on each face. Can you find the route it has taken? What does each face look like?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Can you use this information to work out Charlie's house number?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Can you use the information to find out which cards I have used?

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

These two group activities use mathematical reasoning - one is numerical, one geometric.

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?