Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

What is the best way to shunt these carriages so that each train can continue its journey?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

These practical challenges are all about making a 'tray' and covering it with paper.

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

How many models can you find which obey these rules?

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

An activity making various patterns with 2 x 1 rectangular tiles.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

How many different triangles can you make on a circular pegboard that has nine pegs?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Find out about Magic Squares in this article written for students. Why are they magic?!

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

An investigation that gives you the opportunity to make and justify predictions.

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.