These practical challenges are all about making a 'tray' and covering it with paper.

What is the best way to shunt these carriages so that each train can continue its journey?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

An activity making various patterns with 2 x 1 rectangular tiles.

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

How many models can you find which obey these rules?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Can you find all the different ways of lining up these Cuisenaire rods?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

This activity investigates how you might make squares and pentominoes from Polydron.

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Investigate the different ways you could split up these rooms so that you have double the number.

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Can you draw a square in which the perimeter is numerically equal to the area?