Have a go at balancing this equation. Can you find different ways of doing it?

Can you order the digits from 1-6 to make a number which is divisible by 6 so when the last digit is removed it becomes a 5-figure number divisible by 5, and so on?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Can you replace the letters with numbers? Is there only one solution in each case?

My local DIY shop calculates the price of its windows according to the area of glass and the length of frame used. Can you work out how they arrived at these prices?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Can you work out some different ways to balance this equation?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Can you use the information to find out which cards I have used?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

When you throw two regular, six-faced dice you have more chance of getting one particular result than any other. What result would that be? Why is this?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

Can you draw a square in which the perimeter is numerically equal to the area?

What is the smallest number of coins needed to make up 12 dollars and 83 cents?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

How many rectangles can you find in this shape? Which ones are differently sized and which are 'similar'?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

Here are four cubes joined together. How many other arrangements of four cubes can you find? Can you draw them on dotty paper?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Can you make square numbers by adding two prime numbers together?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

What happens when you round these three-digit numbers to the nearest 100?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

Stuart's watch loses two minutes every hour. Adam's watch gains one minute every hour. Use the information to work out what time (the real time) they arrived at the airport.

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?