Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

In a bowl there are 4 Chocolates, 3 Jellies and 5 Mints. Find a way to share the sweets between the three children so they each get the kind they like. Is there more than one way to do it?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

Six friends sat around a circular table. Can you work out from the information who sat where and what their profession were?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

These activities focus on finding all possible solutions so if you work in a systematic way, you won't leave any out.

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

My cousin was 24 years old on Friday April 5th in 1974. On what day of the week was she born?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

The Zargoes use almost the same alphabet as English. What does this birthday message say?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

On a digital 24 hour clock, at certain times, all the digits are consecutive. How many times like this are there between midnight and 7 a.m.?

How many trapeziums, of various sizes, are hidden in this picture?

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

In this challenge, buckets come in five different sizes. If you choose some buckets, can you investigate the different ways in which they can be filled?

Can you use this information to work out Charlie's house number?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Jack has nine tiles. He put them together to make a square so that two tiles of the same colour were not beside each other. Can you find another way to do it?

Arrange 3 red, 3 blue and 3 yellow counters into a three-by-three square grid, so that there is only one of each colour in every row and every column

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

What is the smallest number of coins needed to make up 12 dollars and 83 cents?