Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

Pentagram Pylons - can you elegantly recreate them? Or, the European flag in LOGO - what poses the greater problem?

Remember that you want someone following behind you to see where you went. Can yo work out how these patterns were created and recreate them?

Time for a little mathemagic! Choose any five cards from a pack and show four of them to your partner. How can they work out the fifth?

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

This activity investigates how you might make squares and pentominoes from Polydron.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Many natural systems appear to be in equilibrium until suddenly a critical point is reached, setting up a mudslide or an avalanche or an earthquake. In this project, students will use a simple. . . .

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

How many different triangles can you make on a circular pegboard that has nine pegs?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

My cube has inky marks on each face. Can you find the route it has taken? What does each face look like?

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?