You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

How many different symmetrical shapes can you make by shading triangles or squares?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

What happens when you add three numbers together? Will your answer be odd or even? How do you know?

A challenging activity focusing on finding all possible ways of stacking rods.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

This task follows on from Build it Up and takes the ideas into three dimensions!

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Can you find all the ways to get 15 at the top of this triangle of numbers?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

This challenge extends the Plants investigation so now four or more children are involved.

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

A few extra challenges set by some young NRICH members.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Find out what a "fault-free" rectangle is and try to make some of your own.

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .