You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

How many different symmetrical shapes can you make by shading triangles or squares?

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

How many solutions can you find to this sum? Each of the different letters stands for a different number.

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

A Sudoku that uses transformations as supporting clues.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

The clues for this Sudoku are the product of the numbers in adjacent squares.

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

This task follows on from Build it Up and takes the ideas into three dimensions!

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

Can you find all the ways to get 15 at the top of this triangle of numbers?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

Given the products of adjacent cells, can you complete this Sudoku?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

A few extra challenges set by some young NRICH members.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.