You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Find out about Magic Squares in this article written for students. Why are they magic?!

How many different symmetrical shapes can you make by shading triangles or squares?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

A challenging activity focusing on finding all possible ways of stacking rods.

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

What happens when you add three numbers together? Will your answer be odd or even? How do you know?

A few extra challenges set by some young NRICH members.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

Can you order the digits from 1-6 to make a number which is divisible by 6 so when the last digit is removed it becomes a 5-figure number divisible by 5, and so on?

Find out what a "fault-free" rectangle is and try to make some of your own.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

This challenge extends the Plants investigation so now four or more children are involved.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?