What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Can you work out some different ways to balance this equation?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

Can you replace the letters with numbers? Is there only one solution in each case?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Arrange 3 red, 3 blue and 3 yellow counters into a three-by-three square grid, so that there is only one of each colour in every row and every column

Jack has nine tiles. He put them together to make a square so that two tiles of the same colour were not beside each other. Can you find another way to do it?

This dice train has been made using specific rules. How many different trains can you make?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

These eleven shapes each stand for a different number. Can you use the multiplication sums to work out what they are?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?