Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

What is the best way to shunt these carriages so that each train can continue its journey?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

An activity making various patterns with 2 x 1 rectangular tiles.

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

These practical challenges are all about making a 'tray' and covering it with paper.

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

How many models can you find which obey these rules?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

How many different triangles can you make on a circular pegboard that has nine pegs?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

How many different symmetrical shapes can you make by shading triangles or squares?

Find out what a "fault-free" rectangle is and try to make some of your own.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Can you find all the different triangles on these peg boards, and find their angles?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?