Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Number problems at primary level that require careful consideration.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

What happens when you round these three-digit numbers to the nearest 100?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Can you find all the ways to get 15 at the top of this triangle of numbers?

This task follows on from Build it Up and takes the ideas into three dimensions!

What is the smallest number of coins needed to make up 12 dollars and 83 cents?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

You have 5 darts and your target score is 44. How many different ways could you score 44?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Can you use the information to find out which cards I have used?

How many different journeys could you make if you were going to visit four stations in this network? How about if there were five stations? Can you predict the number of journeys for seven stations?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Can you replace the letters with numbers? Is there only one solution in each case?

If you had any number of ordinary dice, what are the possible ways of making their totals 6? What would the product of the dice be each time?

Can you use this information to work out Charlie's house number?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?