Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

Remember that you want someone following behind you to see where you went. Can yo work out how these patterns were created and recreate them?

Pentagram Pylons - can you elegantly recreate them? Or, the European flag in LOGO - what poses the greater problem?

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

Time for a little mathemagic! Choose any five cards from a pack and show four of them to your partner. How can they work out the fifth?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

This activity investigates how you might make squares and pentominoes from Polydron.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Investigate the different ways you could split up these rooms so that you have double the number.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

What is the best way to shunt these carriages so that each train can continue its journey?

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

How many models can you find which obey these rules?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

These practical challenges are all about making a 'tray' and covering it with paper.

Many natural systems appear to be in equilibrium until suddenly a critical point is reached, setting up a mudslide or an avalanche or an earthquake. In this project, students will use a simple. . . .

In how many ways can you stack these rods, following the rules?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

An activity making various patterns with 2 x 1 rectangular tiles.

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Can you find all the different ways of lining up these Cuisenaire rods?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?