Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

Remember that you want someone following behind you to see where you went. Can yo work out how these patterns were created and recreate them?

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

Pentagram Pylons - can you elegantly recreate them? Or, the European flag in LOGO - what poses the greater problem?

Time for a little mathemagic! Choose any five cards from a pack and show four of them to your partner. How can they work out the fifth?

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

This activity investigates how you might make squares and pentominoes from Polydron.

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

How many models can you find which obey these rules?

This article for teachers suggests activities based on pegboards, from pattern generation to finding all possible triangles, for example.

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

How many different triangles can you make on a circular pegboard that has nine pegs?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Investigate the different ways you could split up these rooms so that you have double the number.

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

What is the best way to shunt these carriages so that each train can continue its journey?

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?