Design an arrangement of display boards in the school hall which fits the requirements of different people.

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

What is the best way to shunt these carriages so that each train can continue its journey?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

Can you find all the different ways of lining up these Cuisenaire rods?

An activity making various patterns with 2 x 1 rectangular tiles.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Find out what a "fault-free" rectangle is and try to make some of your own.

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

These practical challenges are all about making a 'tray' and covering it with paper.

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Investigate the different ways you could split up these rooms so that you have double the number.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

This task follows on from Build it Up and takes the ideas into three dimensions!

Can you find all the ways to get 15 at the top of this triangle of numbers?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

In how many ways can you stack these rods, following the rules?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.