Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Given the products of diagonally opposite cells - can you complete this Sudoku?

Find out what a "fault-free" rectangle is and try to make some of your own.

Two sudokus in one. Challenge yourself to make the necessary connections.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

In a bowl there are 4 Chocolates, 3 Jellies and 5 Mints. Find a way to share the sweets between the three children so they each get the kind they like. Is there more than one way to do it?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Two sudokus in one. Challenge yourself to make the necessary connections.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Arrange the digits 1, 1, 2, 2, 3 and 3 so that between the two 1's there is one digit, between the two 2's there are two digits, and between the two 3's there are three digits.

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

A Sudoku that uses transformations as supporting clues.

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.