This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

A Sudoku with clues given as sums of entries.

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Find out about Magic Squares in this article written for students. Why are they magic?!

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

A Sudoku that uses transformations as supporting clues.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

Two sudokus in one. Challenge yourself to make the necessary connections.

Two sudokus in one. Challenge yourself to make the necessary connections.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

Solve the equations to identify the clue numbers in this Sudoku problem.

Four small numbers give the clue to the contents of the four surrounding cells.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

You need to find the values of the stars before you can apply normal Sudoku rules.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

Given the products of diagonally opposite cells - can you complete this Sudoku?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

This Sudoku, based on differences. Using the one clue number can you find the solution?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Find out what a "fault-free" rectangle is and try to make some of your own.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

A few extra challenges set by some young NRICH members.

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Can you find all the different triangles on these peg boards, and find their angles?

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?