This dice train has been made using specific rules. How many different trains can you make?

If you had any number of ordinary dice, what are the possible ways of making their totals 6? What would the product of the dice be each time?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Can you make square numbers by adding two prime numbers together?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

The discs for this game are kept in a flat square box with a square hole for each disc. Use the information to find out how many discs of each colour there are in the box.

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Roll two red dice and a green dice. Add the two numbers on the red dice and take away the number on the green. What are all the different possibilities that could come up?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

How could you arrange at least two dice in a stack so that the total of the visible spots is 18?

An investigation that gives you the opportunity to make and justify predictions.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

When you throw two regular, six-faced dice you have more chance of getting one particular result than any other. What result would that be? Why is this?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Can you order the digits from 1-6 to make a number which is divisible by 6 so when the last digit is removed it becomes a 5-figure number divisible by 5, and so on?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

You have 5 darts and your target score is 44. How many different ways could you score 44?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?