Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Find the values of the nine letters in the sum: FOOT + BALL = GAME

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

A few extra challenges set by some young NRICH members.

A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

A challenging activity focusing on finding all possible ways of stacking rods.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

This challenge extends the Plants investigation so now four or more children are involved.

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Can you use the information to find out which cards I have used?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

Given the products of adjacent cells, can you complete this Sudoku?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Can you find all the different ways of lining up these Cuisenaire rods?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Try out the lottery that is played in a far-away land. What is the chance of winning?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?