A challenging activity focusing on finding all possible ways of stacking rods.

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

How many different symmetrical shapes can you make by shading triangles or squares?

This activity investigates how you might make squares and pentominoes from Polydron.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

These practical challenges are all about making a 'tray' and covering it with paper.

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Can you draw a square in which the perimeter is numerically equal to the area?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

In how many ways can you stack these rods, following the rules?

How many different triangles can you make on a circular pegboard that has nine pegs?

Use the clues about the symmetrical properties of these letters to place them on the grid.

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Investigate the different ways you could split up these rooms so that you have double the number.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

Can you find all the different triangles on these peg boards, and find their angles?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

My cube has inky marks on each face. Can you find the route it has taken? What does each face look like?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Move your counters through this snake of cards and see how far you can go. Are you surprised by where you end up?

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

Pentagram Pylons - can you elegantly recreate them? Or, the European flag in LOGO - what poses the greater problem?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?