Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

Jack has nine tiles. He put them together to make a square so that two tiles of the same colour were not beside each other. Can you find another way to do it?

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

In a bowl there are 4 Chocolates, 3 Jellies and 5 Mints. Find a way to share the sweets between the three children so they each get the kind they like. Is there more than one way to do it?

In this challenge, buckets come in five different sizes. If you choose some buckets, can you investigate the different ways in which they can be filled?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Arrange 3 red, 3 blue and 3 yellow counters into a three-by-three square grid, so that there is only one of each colour in every row and every column

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

These eleven shapes each stand for a different number. Can you use the multiplication sums to work out what they are?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

When you throw two regular, six-faced dice you have more chance of getting one particular result than any other. What result would that be? Why is this?

What is the date in February 2002 where the 8 digits are palindromic if the date is written in the British way?

Find all the different shapes that can be made by joining five equilateral triangles edge to edge.

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

This task depends on groups working collaboratively, discussing and reasoning to agree a final product.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

The Zargoes use almost the same alphabet as English. What does this birthday message say?

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

How many trapeziums, of various sizes, are hidden in this picture?

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

On a digital 24 hour clock, at certain times, all the digits are consecutive. How many times like this are there between midnight and 7 a.m.?

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?