How many different symmetrical shapes can you make by shading triangles or squares?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

A challenging activity focusing on finding all possible ways of stacking rods.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Use the clues about the symmetrical properties of these letters to place them on the grid.

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

Can you use the information to find out which cards I have used?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Four small numbers give the clue to the contents of the four surrounding cells.

How many rectangles can you find in this shape? Which ones are differently sized and which are 'similar'?

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

This Sudoku, based on differences. Using the one clue number can you find the solution?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

What is the best way to shunt these carriages so that each train can continue its journey?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

How many different triangles can you make on a circular pegboard that has nine pegs?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Can you draw a square in which the perimeter is numerically equal to the area?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

In how many ways can you stack these rods, following the rules?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

My local DIY shop calculates the price of its windows according to the area of glass and the length of frame used. Can you work out how they arrived at these prices?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

This article for teachers suggests activities based on pegboards, from pattern generation to finding all possible triangles, for example.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".