Can you draw a square in which the perimeter is numerically equal to the area?

My local DIY shop calculates the price of its windows according to the area of glass and the length of frame used. Can you work out how they arrived at these prices?

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

How many rectangles can you find in this shape? Which ones are differently sized and which are 'similar'?

These rectangles have been torn. How many squares did each one have inside it before it was ripped?

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

Sally and Ben were drawing shapes in chalk on the school playground. Can you work out what shapes each of them drew using the clues?

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

These practical challenges are all about making a 'tray' and covering it with paper.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

On a digital clock showing 24 hour time, over a whole day, how many times does a 5 appear? Is it the same number for a 12 hour clock over a whole day?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

In a bowl there are 4 Chocolates, 3 Jellies and 5 Mints. Find a way to share the sweets between the three children so they each get the kind they like. Is there more than one way to do it?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Stuart's watch loses two minutes every hour. Adam's watch gains one minute every hour. Use the information to work out what time (the real time) they arrived at the airport.

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

Investigate the different ways you could split up these rooms so that you have double the number.

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.