What happens when you round these three-digit numbers to the nearest 100?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

What happens when you round these numbers to the nearest whole number?

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Have a go at balancing this equation. Can you find different ways of doing it?

Can you work out some different ways to balance this equation?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

An investigation that gives you the opportunity to make and justify predictions.

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Number problems at primary level that require careful consideration.

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Can you replace the letters with numbers? Is there only one solution in each case?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

This task follows on from Build it Up and takes the ideas into three dimensions!

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

You have 5 darts and your target score is 44. How many different ways could you score 44?

Can you find all the ways to get 15 at the top of this triangle of numbers?

How many different journeys could you make if you were going to visit four stations in this network? How about if there were five stations? Can you predict the number of journeys for seven stations?

How could you arrange at least two dice in a stack so that the total of the visible spots is 18?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?