Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

A few extra challenges set by some young NRICH members.

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Find the values of the nine letters in the sum: FOOT + BALL = GAME

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Can you find all the different ways of lining up these Cuisenaire rods?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

This challenge extends the Plants investigation so now four or more children are involved.

How many different triangles can you make on a circular pegboard that has nine pegs?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

How many models can you find which obey these rules?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Given the products of adjacent cells, can you complete this Sudoku?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?