Vincent and Tara are making triangles with the class construction set. They have a pile of strips of different lengths. How many different triangles can they make?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

My coat has three buttons. How many ways can you find to do up all the buttons?

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

Lorenzie was packing his bag for a school trip. He packed four shirts and three pairs of pants. "I will be able to have a different outfit each day", he said. How many days will Lorenzie be away?

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

Moira is late for school. What is the shortest route she can take from the school gates to the entrance?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Can you see who the gold medal winner is? What about the silver medal winner and the bronze medal winner?

How many different shapes can you make by putting four right- angled isosceles triangles together?

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

Imagine that the puzzle pieces of a jigsaw are roughly a rectangular shape and all the same size. How many different puzzle pieces could there be?

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Use the information to describe these marbles. What colours must be on marbles that sparkle when rolling but are dark inside?

Can you find out in which order the children are standing in this line?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

My briefcase has a three-number combination lock, but I have forgotten the combination. I remember that there's a 3, a 5 and an 8. How many possible combinations are there to try?

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

The brown frog and green frog want to swap places without getting wet. They can hop onto a lily pad next to them, or hop over each other. How could they do it?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Take three differently coloured blocks - maybe red, yellow and blue. Make a tower using one of each colour. How many different towers can you make?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

This train line has two tracks which cross at different points. Can you find all the routes that end at Cheston?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Chandra, Jane, Terry and Harry ordered their lunches from the sandwich shop. Use the information below to find out who ordered each sandwich.

El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?

What two-digit numbers can you make with these two dice? What can't you make?