What is the best way to shunt these carriages so that each train can continue its journey?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

What happens when you try and fit the triomino pieces into these two grids?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

How many different rhythms can you make by putting two drums on the wheel?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

These practical challenges are all about making a 'tray' and covering it with paper.

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

My coat has three buttons. How many ways can you find to do up all the buttons?

Imagine that the puzzle pieces of a jigsaw are roughly a rectangular shape and all the same size. How many different puzzle pieces could there be?

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

My briefcase has a three-number combination lock, but I have forgotten the combination. I remember that there's a 3, a 5 and an 8. How many possible combinations are there to try?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

An activity making various patterns with 2 x 1 rectangular tiles.

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

How many different triangles can you make on a circular pegboard that has nine pegs?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Can you find all the different ways of lining up these Cuisenaire rods?

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?