Have a go at balancing this equation. Can you find different ways of doing it?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

Can you find the chosen number from the grid using the clues?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

This challenge is about finding the difference between numbers which have the same tens digit.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

What happens when you round these three-digit numbers to the nearest 100?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

What two-digit numbers can you make with these two dice? What can't you make?

Can you replace the letters with numbers? Is there only one solution in each case?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

An investigation that gives you the opportunity to make and justify predictions.

Can you work out some different ways to balance this equation?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

In how many ways can you stack these rods, following the rules?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

How many rectangles can you find in this shape? Which ones are differently sized and which are 'similar'?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

What could the half time scores have been in these Olympic hockey matches?

Using all ten cards from 0 to 9, rearrange them to make five prime numbers. Can you find any other ways of doing it?

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

Can you use the information to find out which cards I have used?

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

On a digital clock showing 24 hour time, over a whole day, how many times does a 5 appear? Is it the same number for a 12 hour clock over a whole day?

El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

Can you draw a square in which the perimeter is numerically equal to the area?

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!