Can you see who the gold medal winner is? What about the silver medal winner and the bronze medal winner?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Investigate the different ways you could split up these rooms so that you have double the number.

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

The Zargoes use almost the same alphabet as English. What does this birthday message say?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

How many trapeziums, of various sizes, are hidden in this picture?

On a digital 24 hour clock, at certain times, all the digits are consecutive. How many times like this are there between midnight and 7 a.m.?

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

What could the half time scores have been in these Olympic hockey matches?

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

My cube has inky marks on each face. Can you find the route it has taken? What does each face look like?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

In how many ways can you stack these rods, following the rules?

What is the smallest number of coins needed to make up 12 dollars and 83 cents?

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?