There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Can you see who the gold medal winner is? What about the silver medal winner and the bronze medal winner?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

Can you find all the different ways of lining up these Cuisenaire rods?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

How many trains can you make which are the same length as Matt's, using rods that are identical?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

What is the best way to shunt these carriages so that each train can continue its journey?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Can you use the information to find out which cards I have used?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

This challenge extends the Plants investigation so now four or more children are involved.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

How many different triangles can you make on a circular pegboard that has nine pegs?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

What could the half time scores have been in these Olympic hockey matches?

How many models can you find which obey these rules?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Investigate the different ways you could split up these rooms so that you have double the number.

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

An activity making various patterns with 2 x 1 rectangular tiles.

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

How many different triangles can you draw on the dotty grid which each have one dot in the middle?