Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

Can you see who the gold medal winner is? What about the silver medal winner and the bronze medal winner?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

What is the best way to shunt these carriages so that each train can continue its journey?

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

How many models can you find which obey these rules?

Can you use the information to find out which cards I have used?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Investigate the different ways you could split up these rooms so that you have double the number.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

This activity investigates how you might make squares and pentominoes from Polydron.

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

An activity making various patterns with 2 x 1 rectangular tiles.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?