This task depends on groups working collaboratively, discussing and reasoning to agree a final product.

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

A challenging activity focusing on finding all possible ways of stacking rods.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

What happens when you try and fit the triomino pieces into these two grids?

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Here are four cubes joined together. How many other arrangements of four cubes can you find? Can you draw them on dotty paper?

Can you find all the different triangles on these peg boards, and find their angles?

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

This challenge extends the Plants investigation so now four or more children are involved.

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

In how many ways can you stack these rods, following the rules?

Try this matching game which will help you recognise different ways of saying the same time interval.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

How many possible necklaces can you find? And how do you know you've found them all?

In this matching game, you have to decide how long different events take.

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

Try out the lottery that is played in a far-away land. What is the chance of winning?

In this challenge, buckets come in five different sizes. If you choose some buckets, can you investigate the different ways in which they can be filled?

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Can you find all the different ways of lining up these Cuisenaire rods?

How many trains can you make which are the same length as Matt's, using rods that are identical?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Find out what a "fault-free" rectangle is and try to make some of your own.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.