Can you see who the gold medal winner is? What about the silver medal winner and the bronze medal winner?

Can you use the information to find out which cards I have used?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

Six friends sat around a circular table. Can you work out from the information who sat where and what their profession were?

Lorenzie was packing his bag for a school trip. He packed four shirts and three pairs of pants. "I will be able to have a different outfit each day", he said. How many days will Lorenzie be away?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

Imagine that the puzzle pieces of a jigsaw are roughly a rectangular shape and all the same size. How many different puzzle pieces could there be?

These activities focus on finding all possible solutions so if you work in a systematic way, you won't leave any out.

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

The Zargoes use almost the same alphabet as English. What does this birthday message say?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Moira is late for school. What is the shortest route she can take from the school gates to the entrance?

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Can you find out in which order the children are standing in this line?

Use the information to describe these marbles. What colours must be on marbles that sparkle when rolling but are dark inside?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

My coat has three buttons. How many ways can you find to do up all the buttons?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

How many different shapes can you make by putting four right- angled isosceles triangles together?

My briefcase has a three-number combination lock, but I have forgotten the combination. I remember that there's a 3, a 5 and an 8. How many possible combinations are there to try?

This challenge is about finding the difference between numbers which have the same tens digit.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

This train line has two tracks which cross at different points. Can you find all the routes that end at Cheston?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

Vincent and Tara are making triangles with the class construction set. They have a pile of strips of different lengths. How many different triangles can they make?