You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

These practical challenges are all about making a 'tray' and covering it with paper.

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

Can you draw a square in which the perimeter is numerically equal to the area?

Investigate the different ways you could split up these rooms so that you have double the number.

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

What happens when you try and fit the triomino pieces into these two grids?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

What is the best way to shunt these carriages so that each train can continue its journey?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

An activity making various patterns with 2 x 1 rectangular tiles.

How many models can you find which obey these rules?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

In how many ways can you stack these rods, following the rules?

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

How many possible necklaces can you find? And how do you know you've found them all?

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

My local DIY shop calculates the price of its windows according to the area of glass and the length of frame used. Can you work out how they arrived at these prices?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

An investigation that gives you the opportunity to make and justify predictions.

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?