There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

In this matching game, you have to decide how long different events take.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

What could the half time scores have been in these Olympic hockey matches?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Use the information to describe these marbles. What colours must be on marbles that sparkle when rolling but are dark inside?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Number problems at primary level that require careful consideration.

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Can you find all the different ways of lining up these Cuisenaire rods?

How many trains can you make which are the same length as Matt's, using rods that are identical?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

How many rectangles can you find in this shape? Which ones are differently sized and which are 'similar'?

What happens when you try and fit the triomino pieces into these two grids?

Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?

Using the statements, can you work out how many of each type of rabbit there are in these pens?