Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

A Sudoku with clues given as sums of entries.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Can you find all the different triangles on these peg boards, and find their angles?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

Try out the lottery that is played in a far-away land. What is the chance of winning?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

How many models can you find which obey these rules?

Use the information to describe these marbles. What colours must be on marbles that sparkle when rolling but are dark inside?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Find out what a "fault-free" rectangle is and try to make some of your own.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

What happens when you try and fit the triomino pieces into these two grids?

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

How many trains can you make which are the same length as Matt's, using rods that are identical?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Can you find all the different ways of lining up these Cuisenaire rods?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.