During the third hour after midnight the hands on a clock point in the same direction (so one hand is over the top of the other). At what time, to the nearest second, does this happen?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Alice's mum needs to go to each child's house just once and then back home again. How many different routes are there? Use the information to find out how long each road is on the route she took.

Stuart's watch loses two minutes every hour. Adam's watch gains one minute every hour. Use the information to work out what time (the real time) they arrived at the airport.

On a digital clock showing 24 hour time, over a whole day, how many times does a 5 appear? Is it the same number for a 12 hour clock over a whole day?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

On a digital 24 hour clock, at certain times, all the digits are consecutive. How many times like this are there between midnight and 7 a.m.?

My cousin was 24 years old on Friday April 5th in 1974. On what day of the week was she born?

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

This activity investigates how you might make squares and pentominoes from Polydron.

What happens when you try and fit the triomino pieces into these two grids?

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

An activity making various patterns with 2 x 1 rectangular tiles.

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

What is the date in February 2002 where the 8 digits are palindromic if the date is written in the British way?

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Investigate the different ways you could split up these rooms so that you have double the number.

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Can you use the information to find out which cards I have used?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

In how many ways can you stack these rods, following the rules?

How many models can you find which obey these rules?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?