Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

This challenge is about finding the difference between numbers which have the same tens digit.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

In this calculation, the box represents a missing digit. What could the digit be? What would the solution be in each case?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Use these head, body and leg pieces to make Robot Monsters which are different heights.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

This dice train has been made using specific rules. How many different trains can you make?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Find all the numbers that can be made by adding the dots on two dice.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

The discs for this game are kept in a flat square box with a square hole for each disc. Use the information to find out how many discs of each colour there are in the box.

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

How could you arrange at least two dice in a stack so that the total of the visible spots is 18?

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Can you make square numbers by adding two prime numbers together?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

What happens when you add three numbers together? Will your answer be odd or even? How do you know?

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

If you had any number of ordinary dice, what are the possible ways of making their totals 6? What would the product of the dice be each time?

Can you use the information to find out which cards I have used?

These eleven shapes each stand for a different number. Can you use the multiplication sums to work out what they are?

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?