Roll two red dice and a green dice. Add the two numbers on the red dice and take away the number on the green. What are all the different possibilities that could come up?

Try out the lottery that is played in a far-away land. What is the chance of winning?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

This challenge extends the Plants investigation so now four or more children are involved.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

When you throw two regular, six-faced dice you have more chance of getting one particular result than any other. What result would that be? Why is this?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

Alice's mum needs to go to each child's house just once and then back home again. How many different routes are there? Use the information to find out how long each road is on the route she took.

How many different triangles can you make on a circular pegboard that has nine pegs?

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

Use these head, body and leg pieces to make Robot Monsters which are different heights.

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

An investigation that gives you the opportunity to make and justify predictions.

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Can you find all the different ways of lining up these Cuisenaire rods?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Number problems at primary level that require careful consideration.

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Find out what a "fault-free" rectangle is and try to make some of your own.

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

How many trains can you make which are the same length as Matt's, using rods that are identical?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Chandra, Jane, Terry and Harry ordered their lunches from the sandwich shop. Use the information below to find out who ordered each sandwich.

My briefcase has a three-number combination lock, but I have forgotten the combination. I remember that there's a 3, a 5 and an 8. How many possible combinations are there to try?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Can you find the chosen number from the grid using the clues?