In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Can you find out in which order the children are standing in this line?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Can you find the chosen number from the grid using the clues?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Use the information to describe these marbles. What colours must be on marbles that sparkle when rolling but are dark inside?

Chandra, Jane, Terry and Harry ordered their lunches from the sandwich shop. Use the information below to find out who ordered each sandwich.

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

How many trains can you make which are the same length as Matt's, using rods that are identical?

These activities focus on finding all possible solutions so if you work in a systematic way, you won't leave any out.

Try this matching game which will help you recognise different ways of saying the same time interval.

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

In this matching game, you have to decide how long different events take.

In this calculation, the box represents a missing digit. What could the digit be? What would the solution be in each case?

This task follows on from Build it Up and takes the ideas into three dimensions!

Can you find all the ways to get 15 at the top of this triangle of numbers?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

This challenge is about finding the difference between numbers which have the same tens digit.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

An investigation that gives you the opportunity to make and justify predictions.

Find out what a "fault-free" rectangle is and try to make some of your own.

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?