If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

An investigation that gives you the opportunity to make and justify predictions.

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

These rectangles have been torn. How many squares did each one have inside it before it was ripped?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Investigate the different ways you could split up these rooms so that you have double the number.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

In how many ways can you stack these rods, following the rules?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

These practical challenges are all about making a 'tray' and covering it with paper.

Have a go at balancing this equation. Can you find different ways of doing it?

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

Can you work out some different ways to balance this equation?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

What is the date in February 2002 where the 8 digits are palindromic if the date is written in the British way?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?