Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

How many models can you find which obey these rules?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

What is the best way to shunt these carriages so that each train can continue its journey?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

An activity making various patterns with 2 x 1 rectangular tiles.

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

What happens when you try and fit the triomino pieces into these two grids?

These practical challenges are all about making a 'tray' and covering it with paper.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Imagine that the puzzle pieces of a jigsaw are roughly a rectangular shape and all the same size. How many different puzzle pieces could there be?

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

My briefcase has a three-number combination lock, but I have forgotten the combination. I remember that there's a 3, a 5 and an 8. How many possible combinations are there to try?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Investigate the different ways you could split up these rooms so that you have double the number.

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.